o X
on
er

A new scheme for I-Cache energy reduction in High-Performance
Processors *

Nikolaos Bellas, Ibrahim Hajj and Constantine Polychronopoulos
Coordinated Sciences Laboratory, and
Electrical and Computer Engineering Department
University of lllinois at Urbana-Champaign, Urbana, IL 61801

Abstract

Prompted by demands in portability and low cost
packaging, the microprocessor industry has started
viewing power, along with area and performance,
as a decisive design factor in today’s microproces-
sors. To that effect, a number of research efforts
have been devoted to architectural modifications
that target power or energy ninimization. Most
of these efforts, however, involve a degradation in
processor performance, and are, thus, deemed ap-
plicable only for the embedded, low-end market.

In this paper, we propose the addition of an ex-
tra, small cache between the I-Cache and the CPU,
that serves to reduce the effective energy dissi-
pated per memory access. In our scheme, the com-
piler generates code that exploits the new memory
hierarchy and reduces the likelihood of a miss in
the extra cache. We show that this is an attrac-
tive solution for the high-end processor market,
since the performance degradation is minimal. We
describe the hardware and compiler modifications
needed to efficiently implement the new memory
hierarchy, and we give the performance and en-
ergy results for most of the SPEC95 benchmarks.
The extra cache, dubbed L-Cache from now on,
is placed between the CPU and the I-Cache. The
D-Cache subsystem remains as is.

1 Introduction

In the latest generations of microprocessors, an in-
creasing number of architecture features have been
exposed to the compiler to enhance performance.
The advantage of this cooperation is that the com-
piler can generate code that exploits the character-

*This work was supported by Intel Corp., Santa Clara,
CA

istics of the machine and avoids expensive stalls
We believe that such schemes can alse be appliec
for power/energy optimization by exposing the me
ory hierarchy features in the compiler.

The filter cache [1] tackles the problem of larg
energy consumption of the L1 caches by adding :
small, and, thus, more energy efficient cache be
tween the CPU and the L1 caches. Provided tha
the working set of the program is relatively small
and the data reuse large, this “mini” cache can pro
vide the data or instructions of the program anc
effectively shut down the L1 caches for long period:
during program execution. The penalty to be paic
is the increased miss rates, and, hence, longer aver
age memory access time. Although this might b
acceptable for embedded systems for multimedi:
or mobile applications, it is out of the question fo
high performance processors. The filter cache de
livers an impressive energy reduction of 58% for :
256-byte, direct mapped filter cache, while reduc
ing performance by 21% for a set of multimedi:
benchmarks. Our approach has a very small per
formance degradation with respect to the origina
scheme without the filter cache, and smaller, bu
still very large, energy gains.

We can alleviate the performance degradatio:
by having the compiler selecting statically, i.e. dur
ing compile time, the parts of the code that are t
be placed in the extra cache (the L-Cache), an
restructuring the code so that it fully exploits th
new hierarchy. The CPU will then access the L
Cache only when instructions from the selecte
part of the program are to be fetched, and it wil
bypass it otherwise. Naturally, we want the mos
frequently executed code to be selected by the com
piler for placement in the L-Cache, since this i
where most of the energy gains will come from.

The approach advocated in our scheme relie
on the use of profile data from previous runs t
select the best instructions to be cached. The uni
of allocation is the basic block, i.e. an instruc
tion is placed in the L-Cache only if it belongs t
a selected basic block. After selection, the com
piler lays out the target program so that the se

PO X
an
er

¢ The algorithm finds that the basic block was
too large to fit in the L-Cache. This can be
either because the size of the block is larger
than the L-Cache size, or because it cannot
fit at the same time with other, more impor-
tant, basic blocks.

e Its execution frequency is smaller than a thresh-

old, and is thus deemed unimportant.

e It is not nested in a loop. There is no point
in placing such a basic block in the L-Cache
since it will be executed only once for each
invocation of its function.

e Even if its execution is large, its ezecution
density might be small. For example, a basic
block that is located in a function which is in-
voked a lot of times might have a large execu-
tion frequency, but it might only be executed
few times for every function invocation. We
define the execution density of a basic block
as the ratio of the number of times it is exe-
cuted to the number of times that the func-
tion in which it belongs, is invoked.

e Finally, a very small basic block is not placed
in the L-Cache even if it satisfies all the above
requirements. The extra branch instructions
that might be needed to link it to its succes-
sor basic blocks will be an important over-
head in this case.

The basic blocks are laid out in the memory ad-
dress space so that all the selected basic blocks are
placed contiguously before the non-selected ones.
This arrangement greatly simplifies the hardware
of the L-Cache as we will see in the next section.
Branches are placed at the end of the blocks, if
needed, to sustain the functionality of the code.

The user can trade off energy savings with de-
lay increase by adjusting the thresholds as these
were discussed in this section. For example, a
smaller size threshold will probably lead to larger
energy savings, and larger delay as well. As an
extreme, the user can also completely disable the
L-Cache, by forcing the compiler (through the user
given thresholds) to generate the original code, or,
on the other extreme, can emulate a filter cache
scheme by selecting every basic block for place-
ment in the L-Cache. The quality of the generated
code can be determined by the user during com-
pile time. Therefore, individual applications can
choose from a range of caching policies.

3 Hardware modifications and Power Estimation

In addition to the compiler enhancement, our scheme

needs extra hardware for the implementation of
the L-Cache scheme. The extra hardware is shown
in Fig. 2.

1+ Cache
\

Figure 2: LCache organization

The organization of the L-Cache itself is de-
picted in Fig. 2. It needs the data and the tag part,
an extra comparator for the tag comparison, and a
32-bit multiplexer which drives the data from the
L-Cache or the I-Cache to the data path pipeline.

The functionality of the L-Cache is as follows:
The PC is presented to the L-Cache tag at the
beginning of the clock cycle. The L-Cache will
only get activated if the “blocked_part” signal is
on. This signal is generated by the IF unit, and its
meaning is explained in the following paragraphs.
In that case, the comparator checks for a match
and if it finds one, it instructs the multiplexer tc
drive the contents of the L-Cache in the data path
The I-Cache is disabled for this clock cycle since
the signal “blocked_part” is on.

In case of a L-Cache miss (“LCache_Hit” is off)
the I-Cache is activated in the next clock cycle anc
provides the data. The I-Cache is accessed if the
L-Cache misses, whereas the L-Cache is accessec
only when “blocked part” = on. If “blocked_part
= off, the I-Cache controller activates the I-Cachs
without waiting for the “LCache Hit” signal. Th
two caches are always accessed sequentially anc
not in parallel.

We extend the ISA, and we add an instruction
called “alloc” which has a J-type MIPS format. I
is inserted by our tool and contains the address o
the first non-placed block of the function. Ther
is one such instruction for every function of th
program and the address of “alloc”is stored whe
a function is entered. During the execution of th
code in the function, if the PC has a value les
than that address, the “blocked.part” signal is set
else this signal will be set to off. This way, th
machine can figure out which portion of the cod
executes with only an extra comparison.

We have developed our cache energy model
based on [3]. This is a transistor level model whic
uses the run-time characteristics of the cache t
estimate the energy dissipation of its main comr
ponents [4]. A 0.8um technology with 3.3 Velt
power supply is assumed. The cache energy is

M

pox
Ston
iser

i
=
1

|
1
{
i
I
i
i

% Conclusions

We believe that, since performance is the most im-
portant objective of today’s high-end microproces-
sors, no energy reduction technique will be accept-
able, unless it only marginally affects the execution
time, or its overhead can be hidden by other com-
piler/architectural techniques. If this is the case,
even a moderate energy reduction will be welcome.

This paper presents a new, modified version of
the filter cache in which the compiler and the extra
hardware cooperate to decrease energy consump-
tion. The compiler can select only the most im-
portant parts of the code to be placed in the extra
cache, and can direct the hardware to probe the
extra cache only when this code is to be fetched
to the data path. The method is adaptive, since
the user can aggressively pursue energy reductions
to the expense of performance, or vice versa, by
providing different compilation options.

References

[1] Johnson Kin, Munish Gupta and William Mangione-
Smith, “The Filter Cache: An Energy Efficient Mem-
ory Structure,” in IEEE International Symposium on
Microarchitecture, pp. 184-193, Dec. 1997.

[2] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques and Tools. Addison—Wesley, 1986.

[3] S. Wilson and N. Jouppi, “An Enhanced Access and
Cycle Time Model for On-Chip Caches,” DEC WRL
Technical Report 93/5, July 1994.

[4] N. Bellas, PhD Thests in progress. 1998.

[5] SpeedShop User’s Guide. Silicon Graphics Inc., 1996.

256 bytes extra cache

Benchmark L-Cache Filter Cache

[€3) (b) (3] 8B 168 3
tomcatv 0.686 0.708 0.73¢9 0.551 0.497 0.
swim 0.242 0.244 0.262 0.243 0.329 0.
su2cor 8.701 0.734 0.827 0.537 G.485 0.
hydro2d 0.418 0.438 0.493 0.397 0.413 0.
mgrid 0.943 06.980 0.986 0.600 0.530 0.
applu 0.736 | 0.755 | 0.840 | 0.541 0.490 | 0.
turb3d 0.618 0.622 0.838 0.426 a.430 Q.
apsi 0.758 0.867 0.9587 0.554 0.498 0.
waved 0.768 0.822 0.822 8.576 0.517 0.
FP aver. 0.652 0.685 0.752 0.492 G.4865 0.
go 0.848 6.9558 0.988 0.612 0.545 0.
m&8ksim 0.818 0.822 0.856 6.617 0.566 0.
compressss 0.890 0.897 0.897 0.5¢69 0.523 0.
H 8.975 0.978 0.976 0.651 0.586 0.
INT aver. 0.908 0.913 0.921 0.612 0.555 Q.

Table 2: Normalized energy relative to the b
machine for 256-byte

512 bytes extra cache

Benchmark L-Cache Filtey Cache

(a) [43) (<) [2:) 13:) 3
tomcaty 0.692 0.692 0.745 0.306 0.369 0.
awim 0.259 0.261 0.279 0.236 0.325 0.
su2cor 0.295 0.308 0.367 0.272 0.343 a.
hydro2d 9.263 0.259 0.299% 0.241 0.326 0.
mgrid 0.2258 0.245 0.279 0.249 0.330 0.
applu 0.666 | 0.68% | 0.787 | ©.333 0446 | ©
turb3d 0.431 0.432 0.696 0.350 G.38T o.
apsi 0.594 0.716 0.856 0.442 0.436 o
waved 0.669 0.723 8.725 0.448 0.447 1]
PP aver. 0.455 0.481 0.559 0.320 0.379 4]
go 0.945 0.955 0.955 0.562 0.511 1]
m88ksim 0.816 0.822 0.856 0.585 0.547 o
compress95 06.893 0.300 0.800 0.400 0.425 o
)iy 6.975 0.878 0.876 0.510 3.491 3]
INT aver. 0.807 0.914 0.922 0.517 0.494 0

Table 3: Normalized energy relative to the t
machine for 512-byte extra cache

256 byles extra cache

Benchmark L-Cache Filter Cache

(2} (b) {c) [35) 168 H
tomcatv 1.002 1.00% 1.000 1.322 1.168 13
swim 1.060 1.000 1.000 1.027 1.016 i
su2cor 1.001 1.001 1.000 1.308 1.187 1
hydro2d 1.038 1.032 1.023 1.174 1.091 1
mgrid 1.008 1.004 1.003 1.367 1.198 3
applu l.c80 1.052 1.032 1.31¢ 1.165 1
turb3d 1.014 1.014 1.003 1.203 1.108 1
apsi 1.022 0.998 0.993 1.318 i.168 1
waves 1.040 1.038 1.038 1.346 1.187 1
FP aver. 1.023 1.016 1.010 1.264 1.140 1
go 1.01¢ 1.0112 1.011 1.349 1.199 1
maBksim 1.023 1.024 1.023 1.375 1.227 1
compress8s 1.023 1.021 1.021 1.340 1.193 1
1 0.987 0.898 0.598 1.407 1.244 1
INT aver. 1.015 1.014 1.013 1.368 1.216 1

Table 4: Normalized delay relative to the base
chine for 256-byte extra cache

512 bytes extra cache
Benchmark L-Cache Filter Cache
{a) (b) {c) 88 168
tomcstv 1.000 1.000 1.000 1.083 1.04%9 1
swim 1.002 1.000 1.000 1.017 1.010 1
sa2cor 1.010 1.003 1.001 1.050 1.026 1
hydro2d 1.052 1.030 1.0286 1.021 1.011 1
mgrid 1.009 1.004 1.004 1.028 1.014 1
applu 1.240 1.137 1.100 1.23¢ 1.122 3
turb3d 1.037 1.033 r.018 1.126 1.067 1
apsi 1.040 1.012 G.987 1.211 1.111 b
waves 1.0237 1.038 1.038 1.220 1.122 1
FP aver. 1.046 1.029 1.019 1.110 1.059 1
go 1.018 1.011 1.01% 1.301 1.170 1
m88ksim 1.023 1.024 1.023 1.350 1.207 3
compress9s 1.023 1.021 1.021 1.174 1.101 1
1 0.997 0.998 0.998 1.272 1.159 N
INT aver. 1.015 1.014 1.013 1.274 1.159 :

Table 5: Normalized delay relative to the base

chine for 512-byte extra cache

